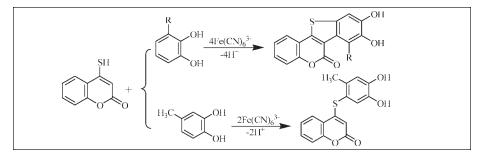
A Facile Method for the Synthesis of Thiocoumestan Derivatives

Davood Nematollahi,^a* Javad Azizian,^b Mohsen Sargordan-Arani,^c Mahdi Hesari,^d and Behrooz Mirza^e

^aDepartment of Analytic Chemistry, Faculty of Chemistry, Bu-Ali Sina University,


Hamadan 65174, Iran

^bDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran ^cFaculty of Chemistry, Islamic Azad University, Shahre Rey Branch, Tehran, Iran ^dDepartment of Soil Science, Faculty of Agriculture, Bu-Ali Sina University, Hamadan 65174, Iran ^eFaculty of Chemistry, Islamic Azad University, South Tehran Branch, Tehran, Iran *E-mail: nemat@basu.ac.ir

Received August 21, 2008

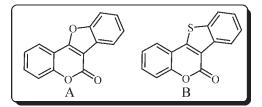
DOI 10.1002/jhet.146

Published online 2 September 2009 in Wiley InterScience (www.interscience.wiley.com).

An efficient synthesis of thiocoumestan derivatives, starting from catechols and 4-mercaptocoumarin in the presence of potassium ferricyanide as an oxidizing agent (Decker oxidation) was developed. The results indicate that the 4-mercaptocoumarin participates in Michael addition reactions with *in situ* generated o-benzoquinones. The present work has led to the development of a one-pot oxidative method for the synthesis of the 6*H*-benzothieno[3,2-*c*][1]benzopyron-6-one derivatives.

J. Heterocyclic Chem., 46, 1000 (2009).

INTRODUCTION


Coumestans, [1] which are derivatives of 6H-benzofuro[3,2-c][1]benzopyran-6-one (Fig. 1) have the basic structure of many natural products such as wedelolactone, medicagol, psoralidin, isopsoralidin, erosnin, and estrogenic cumestrol, with interesting physiological activities [2,3]. The importance of these compounds has led us and many workers to synthesize a number of these compounds by chemical [4–10] and electrochemical [11–14] routes. Following our experiences in oxidation of catechols in the presence of nucleophiles [15–23], we envisaged that synthesis of thiocoumestans (6H-benzothieno[3,2-c][1]benzopyran-6-one) (Fig. 1) might cause an enhancement of physiological activities.

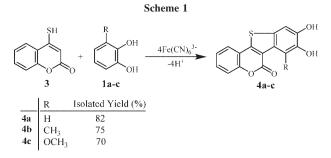
In this direction, some workers synthesize a number of thiocoumestan derivatives [10,24,25]. But, to the best of our knowledge, no reaction of *in situ* generated *o*benzoquinones (2) with 4-mercaptocoumarin (3) has been previously reported. Therefore, we now discover a facile and one-pot synthetic route to thiocoumestans involving oxidation of catechols (1) in the presence of 4-mercapto-coumarin (3), using potassium ferricyanide as an oxidizing agent (Decker oxidation), in high yield and purity.

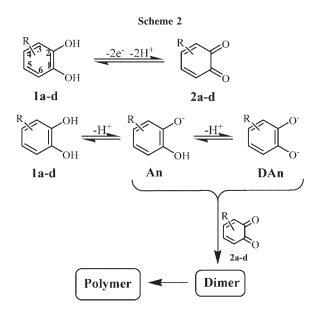
RESULTS AND DISCUSSION

In our earlier work, comparison of the values of half wave potential ($E_{1/2}$), evaluated from the midpoint potential between anodic and cathodic peaks for catechol (0.165 V *vs.* SCE) and potassium ferricyanide (0.195 V *vs.* SCE), using cyclic voltammetry, revealed that potassium ferricyanide was a suitable agent (Decker agent) for mild oxidation of catechols to their corresponding *o*-benzoquinones without any effect on the nucleophile [8]. Therefore, in this work we used potassium ferricyanide as a stable, easily handled, and commercially available oxidizing agent. This agent has also been used in Decker oxidation. During Decker oxidation, 1,3-disubstituted pyridinium salts converts to isomeric pyridones [26].

The reaction for oxidation of (1a-c) in the presence of **3** is presented in Scheme 1. As can be seen, when catechols (1a-c) (1 mmol) was treated with potassium ferricyanide (4 mmol) in water/acetonitrile mixture (70/30 v/v) containing 4-mercaptocoumarin (**3**) (1 mmol) and sodium acetate (0.2 *M*), thiocoumestans (4a-c) were obtained in good yields (Scheme I). In more basic solutions, the formation of anionic forms of catechols formed by an acid dissociation reaction was enhanced and the coupling of anionic

Figure 1. Structures of 6*H*-benzofuro[3,2-*c*][1]benzopyran-6-one (A) and 6*H*-benzothieno[3,2-*c*][1]benzo pyran-6-one (B).

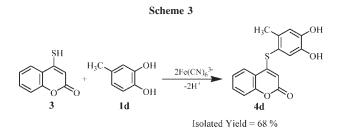

forms with *o*-benzoquinones interfered in the Michael reaction of 4-mercaptocoumarin (**3**) with *o*-benzoquinones (Scheme 2) [23,27,28]. In other words, in an aqueous solution containing 0.2 M sodium acetate, any dimerization [27,28] or hydroxylation [29–31] reactions are too slow to interfere in the synthesis of **4a-c**.


Following our experiences in oxidation of catechols in the presence of nucleophiles [15–23], it seems that in water/acetonitrile mixture (70/30 v/v), the inter and intra Michael addition reactions of anion of 4-mercapto coumarin (3) to *o*-benzoquinone (**2a-c**) is faster than other secondary reactions [27–31], leading to the thiocoumestan derivatives (**4a-c**) as final products.

The oxidation of **1b** and **1c** in the presence of **3** proceeded in a similar fashion to that of **1a** (Scheme 2). The existence of a methyl or methoxy group at the C-3 position of these compounds probably causes relevant Michael acceptors (**2b** and **2c**) to be attacked by **3** at the C-4 or C-5 positions to yield two types of product in each case. As in the *o*-benzoquinones **2b** and **2c** C-5 more electropositive, we suggest that *o*-benzoquinones **2b** and **2c** are selectively attacked at C-5 position by **3** leading to the formation of the products **4b** and **4c**, respectively [15–18].

Interestingly, oxidation of 4-methylcatechol (1d) in the presence of 3 in aqueous sodium acetate/acetonitrile (70/30) solution, because of the existence of methyl group at C-4 position of it that is a reactive site of cyclization, proceeds in a different manner to that of **1a-c** (Scheme 3).

According to Scheme 3, generation of o-benzoquinone 2d is followed by an intermolecular Michael addition of 3 to the o-benzoquinone 2d, producing


the catechol derivative (4-(4,5-dihydroxy-2-methylphenylthio)-2*H*-chromen-2-one) **4d** as final product.

The synthesis of 4-phenylthio-2H-chromen-2-ones has been reported previously by us and several groups using different approaches [32–36]. However, to the best of our knowledge, no reaction of *o*-benzoquinone **2d** with 4-mercaptocoumarin (**3**) has been reported and this method described an efficient and one-pot method for the synthesis of 4-(4,5-dihydroxy-2-methylphenylthio)-2H-chromen-2-one (**4d**).

EXPERIMENTAL

Reagents. All chemicals were reagent grade materials. Sodium acetate, solvents, and reagents were of proanalysis. These chemicals were used without further purification. 4-mercaptocoumarin was prepared by the procedure reported previously [37].

General procedure for the synthesis of 4a-d. To a stirred solution of aqueous sodium acetate 0.2 *M*/acetonitrile (70/30), 4-mercaptocoumarin (3) (1 mmol) was added potassium ferricyanide (4 mmol in the cases of 1a-c and 2 mmol in the case of 1d). A solution of catechols (1a-d) (1 mmol) in relevant solution was prepared and added dropwise to the stirred solution over a period of 20–30 min. The reaction mixture was kept at r.t., with occasional stirring (1 h for 1a and 2.5 h for 1b-d). The solution become dark and formed precipitates. At

the end of the reaction, a few drops of acetic acid were added and the mixture was placed in a refrigerator overnight. The solid formed were collected by filtration and washed several times with water. The final products were characterized by IR, ¹H NMR, ¹³C NMR, and MS spectroscopy.

8,9-Dihydroxy-6*H***-benzothieno[3,2-***c***][1]benzopyran-6-one (C_{15}H_8O_4S) (4a). mp 265–268° (dec); ir (potassium bromide): 3367, 3253, 1703, 1628, 1474, 1352, 1322, 1274, 1224, 1201, 1086, 1032, 989, 867, 836, 810, 752 cm⁻¹; ¹H nmr: \delta(300 MHz, acetone-d₆) 7.29 (s, 1H, aromatic), 7.48 (s, 1H, aromatic), 7.52 (t, 2H, aromatic), 7.69 (t, 1H, aromatic), 8.03 (dd, 1H, aromatic), 8.8 (broad, OH, this peak observed in DMSO-d₆); ¹³C nmr: \delta (75.4 MHz, DMSO-d₆) 99.7, 105.7, 106.0, 112.9, 114.6, 117.8, 122.0, 125.9, 132.3, 145.3, 147.1, 150.2, 153.0, 158.6, 158.9; ms:** *m***/***z* **(relative intensity) 284 [M]⁺ (95), 266 (73), 233 (60), 177 (45), 144 (10), 140 (35), 121 (30), 89(100), 43 (25).**

8,9-Dihydroxy-7-methyl-*6H***-benzothieno**[**3,2-***c*][**1**]**benzopyran-6-one** ($C_{16}H_{10}O_4S$) (4b). mp 230–232° (dec); ir (potassium bromide): 3374, 3163, 2929, 1708, 1603, 1546, 1448, 1343, 1289, 1124, 1170, 1030, 961, 859, 760, 639 cm⁻¹; ¹H nmr: δ (300 MHz, DMSO-d₆) 2.40 (s, 3H, methyl); 7.19 (s, 1H, aromatic); 7.48 (t, 1H, aromatic); 7.57 (d, 1H, aromatic); 7.66 (t, 1H, aromatic); 8.04 (dd, 1H, aromatic), 8.04 (broad, OH) 8.7 (broad, OH); ¹³C nmr: δ (75.4 MHz, DMSO-d₆) 20.7 (methyl), 104.6, 112.7, 113.0, 122.4, 125.5, 129.2, 129.8, 132.2, 132.8, 136.1, 138.1, 151.0, 152.7, 163.9, 164.3; ms: *m/z* (relative intensity) 298 [M]⁺ (100), 280 (40), 265 (45), 178 (40), 144 (23), 121 (321), 89 (50), 63 (15).

8,9-Dihydroxy-7-methoxy-6*H*-benzothieno[**3,2**-*c*][**1**]enzo pyran-6-one ($C_{16}H_{10}O_5S$) (4c). mp 245–248° (dec); ir (potassium bromide): 3641, 3521, 3359, 2923, 2852, 1704, 1628, 1605, 1596, 1466, 1442, 1418, 1396, 1345, 1265, 1204, 1081, 955, 932, 890, 857, 797, 757,746 cm⁻¹; ¹H nmr: δ(300 MHz, acetone-d₆) 4.23 (s, 3H, OMe); 7.21 (s, 1H, aromatic); 7.53 (m, 2H, aromatic); 7.70 (t, 1H, aromatic); 8.11 (dd, 1H, aromatic); 8.80 (broad, OH, this peak observed in DMSO-d₆); ¹³C nmr: δ (75.4 MHz, acetone-d₆) 60.7 (methoxy), 100.1, 106.4, 113.2, 115.8, 117.4, 121.7, 125.1, 131.7, 137.9, 142.4, 142.5, 145.7, 153.5, 157.8, 159.0; ms: *m/z* (relative intensity) 314 [M]⁺ (100), 298(15), 281(60), 271(30), 253 (9), 189 (6), 178 (80), 138 (20), 121 (61), 63 (30), 43 (7).

4-(4,5-Dihydroxy-2-methylphenylthio)-*2H***-chromen-2-one** ($C_{16}H_{12}O_4S$) (**4d**). mp 273–275° (dec); ir (potassium bromide): 3344, 1686, 1600, 1546, 1519, 1445, 1414, 1344, 1320, 1270, 1187, 1158, 950, 869, 841, 824, 767, 743 cm⁻¹; ¹H nmr: $\delta(300 \text{ MHz}, \text{DMSO-d}_6)$ 2.29 (s, 3H, methyl), 5.41 (s, 1H, aromatic), 7.01 (s, 1H, aromatic), 7.10 (s, 1H, aromatic), 7.44 (m, 2H, aromatic), 7.69 (d, 1H, aromatic), 7.94 (d, 1H, aromatic), 8.5 (broad, 2H,OH); ¹³C nmr: δ (75.4 MHz, acetone-d₆) 19.2, 107.3, 113.4, 117.2, 118.1, 118.7, 123.5, 124.2, 124.6, 132.9, 135.6, 145.0, 148.9, 152.9, 157.5, 158.5; ms: *m/z* (relative intensity) 300 [M]⁺ (38), 272 (8), 267 (16), 178 (24), 145 (30), 121 (44), 89 (100), 77 (40), 63 (78), 39 (50).

Acknowledgments. Financial support for this work by the Iran National Science Foundation (INSF), Tehran, Iran, is gratefully acknowledged.

REFERENCES AND NOTES

[1] Deschamp, V. C.; Mentzer, C. Comp Rend 1960, 251, 736.

[2] Bickoff, E. M.; Livingston, A. L.; Booth, A. N.; Thompson, C. R.; Hollwell, E. A.; Beinhart, E. G. J Anim Sci 1960, 19, 4.

[3] Darbarwar, M.; Sundaramurthy, V.; Subba Rao, N. V. Indian J Chem 1973, 11, 115.

[4] Bhalerao, U. T.; Muralikrishna, C.; Pandey, G. Synth Commun 1989, 19, 1303.

[5] Someswari, N.; Srihari, K.; Sundaramurthy, V. Synthesis 1977, 609.

[6] Kurosawa, K.; Nogami, K. Bull Chem Soc Jpn 1976, 49, 1955.

[7] Shah, R. R.; Trivedi, K. N. J Ind Chem Soc 1979, 56, 995.

[8] Nematollahi, D.; Habibi, D.; Alizadeh, A.; Hesari, M. J Heterocycl Chem 2005, 42, 289.

[9] Habibi, D.; Nematollahi, D.; Alizadeh, A.; Hesari, M. Heterocycl Commun 2005, 11, 145.

[10] Yao, T.; Yue, D.; Larock, R. C. J Org Chem 2005, 70, 9985.

[11] Grujic, Z.; Tabakovic, I.; Trkovnik, M. Tetrahedron Lett 1976, 4823.

[12] Tabakovic, I.; Grujic, Z.; Bejtovic, Z. J Heterocycl Chem 1983, 20, 635.

[13] Golabi, S. M.; Nematollahi, D. J Electroanal Chem 1997, 420, 127.

[14] Golabi, S. M.; Nematollahi, D. J Electroanal Chem 1997, 430, 141.

[15] Nematollahi, D.; Shayani-jam, H. J Org Chem 2008, 73, 3428.

[16] Nematollahi, D.; Amani, A.; Tammari, E. J Org Chem 2007, 72, 3646.

[17] Nematollahi, D.; Tammari, E. J Org Chem 2005, 70, 7769.

[18] Nematollahi, D.; Habibi, D.; Rahmati, M.; Rafiee, M. J Org Chem 2004, 69, 2637.

[19] Nematollahi, D.; Afkhami, A.; Tammari, E.; Shariatmanesh, T.; Hesari, M.; Shojaeifard, M. Chem Commun 2007, 162.

[20] Hosseiny Davarani, S. S.; Nematollahi, D.; Mashkouri Najafi, N.; Masoumi, L.; Ramyar, S. J Org Chem 2006, 71, 2139.

[21] Nematollahi, D.; Rafiee, M. Green Chem 2005, 7, 638.

[22] Nematollahi, D.; Goodarzi, H. J Org Chem 2002, 67, 5036.

[23] Nematollahi, D.; Rafiee, M. J Electroanal Chem 2004, 566, 31.

[24] Conley, R. A.; Heindel, N. D. J Org Chem 1975, 40, 3169.

[25] Conley, R. A.; Heindel, N. D. J Chem Soc Chem Commun

1974, 733b[26] Katritzky, A. R. Advances in Heterocyclic Chemistry, Vol. 41; Academic Press: New York, 1987; p. 276.

[27] Nematollahi, D.; Rafiee, M.; Samadi-Maybodi, A. Electrochim Acta 2004, 49, 2495.

[28] Ryan, M. D.; Yueh, A.; Wen-Yu, C. J Electrochem Soc 1980, 127, 1489.

[29] Papouchado, L.; Petrie, G.; Adams, R. N. J Electroanal Chem 1972, 38, 389.

[30] Papouchado, L.; Petrie, G.; Sharp, J. H.; Adams, R. N. J Am Chem Soc 1968, 90, 5620.

[31] Young, T. E.; Griswold, J. R.; Hulbert, M. H. J Org Chem 1974, 39, 1980.

[32] Hsihmat, M. A.; Zayed, O. H.; Nawar, S. M. A. D.; Ahmed A. Tetrahedron 1963, 9, 1831.

[33] Peinhardt, G.; Reppel, L. Pharmazie 1970, 25, 68.

[34] Andres, D. F.; Dietrich, U.; Laurent, E. G.; Marquet, B. S. Tetrahedron 1997, 53, 647.

[35] Grigg, R.; Vipong, D. Tetrahedron 1989, 45, 7587.

[36] Namatollahi, D.; Azizian, J.; Sargordan-Arani, M.; Hesari, M.; Jameh-Bozorgi, S.; Alizadeh, A.; Fotouhi, L.; Mirza, B. Chem Pharm Bull 2008, 56, 1562.

[37] Majumdar, K. C.; Ghosh S. K. Tetrahedron Lett 2002, 43, 2115.